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HEAT TRANSFER IN THERMAL ENTRANCE REGION WITH LAMINAR SLIP FLOW 

BETWEEN PARALLEL PLATES AT UNEQUAL TEMPERATURES 

by Robert M. Inman 

Lewis Research Center 

SUMMARY 

An analysis was made of the forced-convection heat-transfer characteristics for 
fully developed incompressible laminar flow between parallel walls with unequal tempera- 
tures under the condition that the gas density is low enough to permit a velocity slip and a 
temperature jump at the walls. The results apply along the entire length of the channel. 
The solutions contain series expansions and analytical expressions for the complete sets 
of eigenvalues and eigenfunctions. The results give the wall heat-flux requirements and 
Nusselt numbers for various values of the rarefaction parameters and dimensionless 
entrance-temperature parameter. The results show that, in general, the slip-flow heat- 
flux requirements and Nusselt numbers a re  lower than those for continuum flow and that 
they decrease with increased mean free path. The case of slip flow between parallel 
plates at equal temperatures is included for comparison; the length of duct necessary to 
obtain a fully developed Nusselt number is, for a given mean free path, the shortest for 
this case. 

INTRODUCTION 

The interest in the fluid- mechanics and heat-transfer characteristics of slightly 
rarefied gases flowingin conduits has been increased in recent years by the advances in 
high-vacuum technology and by the practical realization of flight at very high altitudes. 
At normal gas pressures the molecular mean-free-path length is so  small that it is pos- 
sible to consider the behavior of the gas in a conduit by means of well-established 
theories of continuum fluid mechanics and heat transfer, with the gas adjacent to a sur- 
face assuming the velocity and temperature of the surface. At  reduced pressures, on the 
other hand, such as might occur in a vacuum application, the gas flow may take place at 
a density low enough to permit a velocity slip and a corresponding temperature jump at 
the conduit wall. This density regime is called the regime of slip flow, and it is this 

I 



regime with which the present investigation is concerned. In this regime the molecular 
mean-free-path length is still small but not negligible. 

The problem of laminar continuum flow between parallel flat plates with different 
temperatures prescribed along each of the two walls is considered in references 1 to 4. 
Heat transfer for laminar slip flow in a parallel-plate channel with constant wall temper- 
atures is studied in reference 5. The results allow for both walls at the same tempera- 
ture or else a uniform temperature at one wall and insulation at the other. 

Specific consideration is given herein to the heat transfer with laminar, incompres- 
sible, fully developed slip flow between a pair of parallel plates, the temperatures of 
which are maintained constant but not equal. A flat-duct heat exchanger, for example, 
which heats or  cools a gas passing through it may be in contact with a constant tempera- 
ture bath at each plate. Since the baths are ,  however, at different temperatures, they 
thereby maintain the duct walls at constant but unequal temperatures. Another example 
of channel flow with constant but unequal wall temperatures arises when different coolants 
undergoing a change of phase a r e  so employed in adjacent flow passages that the tempera- 
ture of one plate of the gas flow channel differs from that of the other plate. Such ex- 
changer channels a r e  customarily made with small wall thickness and of material with 
high thermal conductivity, so that a wall is very nearly at a uniform temperature. 

The present analysis requires the calculation of the odd eigenvalues and eigencon- 
stants for laminar slip flow. The complete solution is then obtained by combining these 
odd quantities with the even eigenvalues and eigenconstants that have been determined in 
reference 5 for slip flow of a rarefied gas between two parallel plates with both wal ls  at 
the same temperature. 

the first step in the analysis is to specify the velocity over the channel cross section. 
The fully developed gas velocity distribution for laminar slip flow in a parallel-plate 
channel was investigated in reference 6, and the results a r e  used in the present study. 
With the velocity distribution specified, the energy equation can be considered. The so- 
lution involves ser ies  expansions, and asymptotic analytical expressions a r e  derived for 
the eigenvalues and eigenconstants as functions of the gas rarefaction parameters and 
entrance-temperature parameter. Numerical solutions of these quantities a r e  also ob- 
tained, and the two methods of computation a r e  compared. 

Since the convective term in the energy equation involves the velocity distribution, 

ANALYSIS 

A schematic diagram of the parallel -plate channel showing dimensional nomenclature 
and coordinates is shown in figure 1. 
For x < 0 the plates and the gas a r e  assumed to be isothermal at temperature te, 

The direction of the gas flow is from left to right. 
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Figure 1. - Physical model and coordinate system for parallel-plate channel. 

a r e  defined in appendix A. ) Each plate surface is characterized by a pair of properties, 
the thermal accommodation coefficient a and the reflection coefficient a (ref. 7). In 
general, a and a may be different for each surface; for the present study, however, it 
will be assumed that a1 = a2 = a and that al = a2 = a. Throughout the analysis, the gas 
flow is assumed hydrodynamically fully developed, viscous dissipation and axial conduc- 
tion a r e  neglected compared with the conduction in the transverse y-direction, fluid prop- 
erties a re  assumed constant, and interactions between the velocity and temperature 
fields, such as thermal creep, a r e  neglected. It is desired to determine the wall heat- 
flux distribution and the variation in the heat-transfer coefficient at each plate along the 
entire length of the channel. 

Energy Equation 

The starting point of the analysis is the differential equation for convective heat 
transfer in the parallel-plate channel flow and is 

a t  a2t PC U - = K -  
P ax 

The dimensionless velocity distribution u/U, where ii is the average velocity, is ob- 
tained from reference 6 and is given by 
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- 
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where a! = tU/2L. The slip coefficient tu is given by the expression (ref. 7) 



where u is the reflection coefficient and Q is the mean free path: 

Equation (l), with u given by equation (2a), is to be solved subject to appropriate 
boundary conditions. Two conditions a re  obtained upon consideration of the effect of gas 
rarefaction on the thermal boundary condition at the two walls, which permit a jump be- 
tween the wall temperature tw and the adjacent gas temperature t (ref. 7): 

g 

at q = l , x > O  - 

where 5, represents a temperature-jump coefficient related to other properties of the 
system by 

2 - a  2X Q 
a X + l P r  t t  =- -- 

The third boundary condition is a specified gas entrance temperature: 

t = t e  at x=O,  - 1 < q < 1  - -  

Equations (l), (5), and (7) may be expressed in terms of nondimensional quantities as 
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T = T e  at [=O, - 1 < q < 1  - -  

where 

and 

If a solution for T that will apply over the entire length of the channel is to be ob- 
tained, it is convenient to break T into the sum of two parts. 
Td = (td - tw, ,)/(tw - tw, m), the fully developed solution, which applies far down the 
channel from the ent&ance. The second part is T* = (t - td)/(t, ), which is an 
entrance-region solution that is added to Td to obtain dimensiohess distributions in the 
region near the entrance of the channel. 
throughout the channel are given by 

The f i rs t  part is 

- t 
w, m 

The dimensionless temperature distributions 

Ful ly Developed Solution 

Far from the entrance to the channel, the gas temperature is independent of t'; that 
is, i t  is a function of 7 and the gas rarefaction parameters only, and equation (8) yields 
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The solution of equation (15) is Td = Aq + B, where A and B are  constants. This 
result indicates that the temperature is linear across the channel. 
tions a re  obtained from equations (9) as 

The boundary condi- 

For the fully developed situation, the boundary condition at the entrance of the heated 
channel ( 5  = 0) need not be considered, since it is accounted for by the entrance region 
solution. When equations (16) a re  used, the fully developed solution becomes 

7 T -- 1 

d - i + 2 r  

Entrance Region Solution 

If the solution in the thermal entrance region is to be determined, the function T* 
is needed. The function T* must satisfy the equation 

aT* - a2T* f(d - - - 
a< aq2 

with the boundary conditions 

at q = 1 ,  < > o  

at q = - 1 ,  < > 0  
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At 5 = 0, the condition is 

or, by rearranging, 

T*(O,q) = Te - - 7 at ~ = O , - I < ~ < I  - 
1 + 217 

A solution to equation (18) may be obtained by the use of the separation-of-variable 
method, whereby T* is taken in the form of a product T* = X(<)H(r), where X is a 
function of r alone and H is a function of 7 alone. Substitution into the differential 
equation (18) shows that 

2 dH + $f(q)H = 0 

dV2 

From equations (19), the boundary conditions on equation (21a) a re  

Equations (21) comprise an eigenvalue problem of the Sturm-Liouville type. Solutions 
fitting the boundary conditions can be found only for discrete values of q7 that is, 
+17 Q 2 .  . . JIn, termed eigenvalues. 
responding eigenfunctions. Hence, the solution for T* can be written as 

The solutions H1, H a .  . . % are  the cor- 

T* =x GnHn(q)e -zcIn5 

n= 1 

The eigenfunctions Hn are treated as functions of q,  although, strictly speaking, they 
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are  functions of both T,I and the eigenvalues z,bn. 

trance to the heated channel (< = 0). Evaluating equation (22) at < = 0 and equating the 
result with equation (19c) gives 

The constants Gn in equation (22) a re  evaluated to satisfy the condition at the en- 

It follows immediately from the properties of the Sturm-Liouville system that 

'\ 
Because of the symmetry of f(q) about the passage centerline, the eigenfunctions may be 
even o r  odd in 17. If Hn is an even function, the second term of equation (23b) disap- 
pears, while if Hn is an odd function, the first term disappears. Hence, the constants 
Gn divide into two classes an and bn that a r e  given by the results 
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where Yn(q) and Zn(q) a r e  even and odd functions, respectively; that is, Yn(-q) = Yn(q) 
and Zn(-q) = -Zn(q). 
solution for T* can be rewritten as 

The corresponding eigenvalues are denoted by Pn and y,, and the 

In reference 5 the result for the coefficients an, when divided by the wall-temperature 
parameter Te, is shown to reduce to 

The series coefficients an are thus 

This result implies that once the eigenfunctions Yn(q; Pn) a re  known, the coefficients an 
of equation (28) may be evaluated for a given value of Te, for example, Te = 1. 
other values of Te, i t  is only necessary to multiply an (for Te = 1) by the new value of 
Te to obtain the new coefficients. 

tion (25) may be written as 

For 

As shown in detail in appendix B, the integral appearing in the numerator of equa- 

whereas the denominator of equation (25) becomes 
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Then, the ser ies  coefficients bn 

bn = 

are 

1 

Now that Td and T* are known, they can be superposed as in equation (14) to obtain 
the solution that applies over the entire length of the channel, which is 

ca co 

W a l l  Heat Fluxes 

When the wall temperatures a r e  specified, the wall heat-flux variations along the 
channel length required to maintain the wall temperatures constant are of practical in- 
terest. If a sign convention is adopted to give positive heat-transfer rates at both walls 
for  5 - 00, then the heat-transfer rate from the upper wall to the gas is given by 

and from the gas to the lower wall by 

and % w7 1 
can be found by differentiating equa- The heat-transfer rates q 

tion (31) with respect to q and evaluating the result at q = 1 and at q = - 1  to obtain 
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co 03 

qw, lL 

K ( t W ,  1 w, 
- ---!--+can(2) e -PnC + x b n ( 2 )  e -Yn5 (34) 

q= 1 q= 1 - t  m) i+2r 
n= 1 n= 1 

co 00 

- Yn5 gw, 2L - - - 1 -can(z) dYn e-',' + c b n ( x )  dZn e 
(35) 

q= 1 q=1 
n= 1 n= 1 

~ ( t w ,  1 - tw, m) 1 + 2' 

since 

and 

become Equations (34) and (35) indicate that the heat-transfer rates q 
uniform and equal along the length of the duct after the development length, that is, after 
the influence of the eigenfunctions dies away. 

w, 1 and qw, 2 

N u sse I t Nu m ber s 

In continuum heat-transfer theory, it is customary to represent the heat-transfer 
results in terms of a heat-transfer coefficient h = qw/(tw - tb) and a Nusselt number 
Nu = h D T / ~ ,  where DT is the thermal diameter and defined as 

Cross -sectional area D = 4 - .~ _ _ ~  ___ 
- Heated perimeter 

For the flat duct, DT = 4L. The extension of these concepts to low-density flows is quite 
natural and appropriate. 

The Nusselt number for the upper wall may be written 
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qw,1 4L Nul = 
tw, 1 - tb 

where $,, the mixed-mean temperature of the gas, is given by 

1 
ut dr] 

tb = 

since 

L ' u d q  = 2ii 

The Nusselt number Nul may be expressed alternatively as 

where 

tb - t 

tw, 1 - m 
Tb = w 7  = A 2 L1 f(q)T dq 

The Nusselt number at the lower wall may be written in the same manner as 

qw,2 - 4L Nu2 = 
tb - tw, 2 

and hence 

(37) 

(39) 
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Putting equations (38) and (41) into more useful forms necessitates knowing the dimen- 
sionless bulk temperature Tb, given by equation (39). Introducing the temperature 
distribution (eq. (31)) and the velocity distribution (eq. (2a)) into equation (39) yields 

The first integral on the right side of equation (42) can be evaluated by using equa- 
tion (21a) for an even eigenfunction with the result 

since (dYn/dr])r],O = 0 by symmetry, while the second integral in equation (42) reduces to 
zero, since integrals of odd functions from r] = 1 to r] = -1 a re  zero. With these re- 
sults, equation (42) becomes 

Final expressions for the Nusselt numbers may be written, with the use of equations (32) 
to (35), (38), (41), and (43), as 

W 00 L+xan(2) e -PnT + x b n ( $ )  e -Yn5 

q=1 n= 1 r]= 1 1 + 2r 
n= 1 Nul = (44) 
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03 

I1 e -',' + x b n ( 2 )  e -Yn5 
q= 1 n= 1 

(45) 

Equations (44) and (45) give the Nusselt number variation for each wall along the entire 
length of the duct. The fully developed value for the Nusselt numbers is obtained when 
5 -c 00 and is the same for both walls: 

Hence, it is necessary for the influence of all eigenfunctions (odd and even) to die away 
before this condition is reached. 
temperature profile given by equation (17): 

The fully developed condition also yields the linear 

which remains unchanged at any value of 5 from this point on. In the corresponding case 
with equal wall temperatures, the Nusselt number becomes fully developed when the tem- 
perature profiles at different distances from the entrance become similar, that is, when 
the value of 5 is sufficiently large for the influence of the second and higher even eigen- 
functions to be negligible (ref. 5). This similarity occurs at distances which are much 
shorter than those in the unsymmetrical case. In addition, the fully developed condition 
in the case of unsymmetrical wall temperatures corresponds to the condition where there 
is no net heat transfer to the fluid, wherezs in the symmetrical case there is a net heat 
transfer to or from the fluid. These factors result in (1) a shorter thermal entry length 
and (2) a higher value of Nud for the symmetrical as compared with the unsymmetrical 
wall temperature case. 

Equation (46) indicates that the fully developed Nusselt numbers Nu and Nu 
a r e  dependent oniy upon the temperature-jump parameter I7 when the plates a r e  main- 
tained at unequal temperatures. 
peratures a re  equal (ref. 5). In the latter case, the fully developed Nusselt number was 
found to depend upon the first eigenvalue given in reference 5, which, in turn, depended 
upon the two rarefaction parameters a! and r. 

2, d 1, d 

This result differs from that obtained when the wall tem- 
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Fully developed Nusselt numbers obtained 
from equation (46) are plotted in figure 2 as a 
function of p F / 2 p ~  in the form of a ratio 

g 
(Nu/Nuo)d, where Nuo represents the con- 
tinuum value 4.00. Also shown are fully de- 
veloped Nusselt numbers for the case of equal 
wall temperatures (ref. 5), where now Nuo 
= 7. 53. The effect of gas rarefaction is to de- 
crease the value of the Nusselt number below 
its continuum value. The effect on the Nusselt 

x 

3 Y 

- - -- 
- number of the specified value of accommoda- 

I I I I  tion coefficient is apparent. The effects of gas I I I -  tw, 1 + tw, 2 
t W , l ' t W , 2  _____ 

Axial Variat ion of Gas Temperature Adjacent to  Wal l  

The axial variations of the gas temperatures adjacent to the wall a re  perhaps also of 
engineering interest. These quantities are obtained readily from equation (3 1) by setting 
q = 1 and 7 = -1 therein. The gas temperature adjacent to the upper wall is 

while that adjacent to the lower wall  is 

n= 1 n= 1 

According to equation (21b), however, 

Yn(l) = -2r(@ 
q= 1 

15 



Then, equations (47a) and (47b) become, respectively, 

03 

T(<, 1) = - - . .[can(-) LPnr + z b n ( $ )  (48a) 
q= 1 q=l  1 + 2r 

n= 1 n= 1 

03 ca 

T(5, -1) = - ~ - 2 r [ C a n ( . - )  - x b n ( . )  (48b) 
q= 1 q= 1 1 + 2 r  

n= 1 n= 1 

In the absence of a temperature jump (r = 0), it is apparent from equation (48a) that 
t = constant = t 
With a temperature-jump effect, however, tg, # tw, and t 

rn, an, bn, ( a Y d a ~ ) ~ = ~ ,  and (aZn/aq)q=l. Attention is now directed to the Sturm- 
Liouville eigenvalue problem (eqs. (21)). 

while from equation (48b) it is seen that for r = 0, tg, = tw, 2. g, 1 w, !' 
g, 2 + tw, 2' 

The foregoing expressions indicate that the solution requires the computation of Pn, 

Transverse Distribution Functions Y(q), Z ( q )  

The even function Y(q) is the even solution of equations (21) and the customary nor- 
malization convention Y(0) = 1. Asymptotic expressions for large values of n for the 
even eigenvalues Pn and constants An = an(aYn/aq)q=l a r e  given in reference 5, and 
the results a r e  presented herein to make the analysis more complete: 

16 



where 

6 n =  @,Il 

/ 

. 2  

/ 

/' 

. 4  

I 

.6 

I 

. a  1.0 
Ratio of sl ip to  average velocity, U,/U 

Figure 3. - Value of definite integral for any rat io of s l ip 
to average velocity. 

The first six roots of equation (49) are given 
in reference 8 for a number of values of C. 
The values of I1 for any given ratio of slip 
velocity to average velocity us/U are shown 
in figure 3. 

The odd eigenvalues 7, and eigencon- 
stants bn and ( aZn/aq)q,l a r e  determined 
from the odd solution of equations (21) and 
the condition Z(0) = 0. This latter condition 
is obtained by setting q = 0 in the condition 
Z(q) = -Z(-7). If the methods presented in 
reference 5 to determine the asymptotic ex- 
pressions for large values of n for the case 

of equal wall temperatures are applied, the asymptotic solution of equations (21) for the 
odd functions Z(q)  satisfying the condition Z(0) = 0 is 

where D is an arbitrary constant and 

The values of the function Z and its slope dZ/dq at the upper plate a re  found by setting 
q = 1 in equations (53) and (54), respectively; the results are 
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where 

and 

The eigenvalues yn a r e  determined by the requirement Z ( l )  = -2r(dZ/dg)g=l. Then, 
with equations (56) and (57) combined in accordance with this relation, the eigenvalues 
a r e  obtained as roots of the characteristic equation 

where c n  c fi J1. 
number of values of C. 
denoted by Zn. 
eigenfunctions Yn and Zn) can be seen to depend on the two rarefaction parameters 

The first six roots of equation (60) are given in reference 8 for a 
The eigenfunctions corresponding to these eigenvalues will be 

From equations (49) and (60) the eigenvalues Pn and T ,  (and hence the 

tu/= and tt/2L. 
If the series coefficients bn (eq. (30)) a re  to be obtained, it is necessary to evaluate 

. These expressions a re  determined 2 
the terms (aZ/ay) r= 1; Y'Yn and ( a  Z/aaW,,l; r=yn 

by differentiating equations (56) and (57), respectively, with respect to y. 

may be written as 
The results 
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4 yn (4 a) 514 

Thus, the coeffi'cients bn as evaluated from equation (30) a r e  given by 

The slope dZ/dq evaluated at the wall, given by equation (57), can be alternately ex- 
pressed as 

It is convenient to define a new coefficient Bn, given by the product of bn and 
(dZn/dq)q=l, as 

Equations (49), (50), (60), and (64) can be used to calculate the eigenvalues P, and yn and 
t the coefficients An and B, forarbitrarily chosenvalues of tu/2L or us/< and tt/2L. 

The first four values of Cn calculated from the asymptotic expressions together 
with the corresponding values-of An are listed in table I as analytical values for several 
values of the parameters us/U and tt/2L. The first four values o f 6  calculated 
from the asymptotic expressions together with the corresponding values of Bn are 
listed in table II as analytical values for these same values of us/U and tt/2L. The 
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TABLE I. - EVEN EIGENVALUES AND COEFFICIENTS FOR LAMINAR 

ical 

SLIP FLOW IN PARALLEL-PLATE CHANNEL WITH 

Analyt- Numer- Analyt- Numer- 
ical ical ical ical 

UNEQUAL WALL TEMPERATURES (Te = 1) 

Ratio of slip to average velocity, us/ii 

1.289 
4.010 
6.906 
9.945 

3/5 
I I 1/3 I 

0.8128 1.111 0.9087 
3.630 3.705 3.602 
6.682 6.645 6.586 
9.794 9.700 9.661 

I Temperature- jump coefficient, 5 t/2L 

0. 8750 
3.451 
6.475 
9.581 

0.1333 1 0.5333 I 0.4 I 1.6 

0. 5273 
3. 337 
6.417 
9.541 

Analyt- Numer- 7; 

even eigenvalues and coefficients for continuum flow (5;,/2L = ct/2L = 0) in a channel with 
unequal wall temperatures are given in table III and were obtained from reference 9, 
while the odd eigenvalues and coefficients are listed in table IV and were obtained from 
reference 4. 

The level of accuracy for the slip-flow eigenvalues and eigenconstants was checked 
by solving numerically the Sturm-Liouville equations (21) by means of the Runge-Kutta 
method on an IBM 7094 digital computer. Reference 5 presents numerical values for the 
even quantities fi and An calculated in this manner, and the results a re  given in 
table I. Equations (21) were solved numerically for the odd quantities in the course of 
the present investigation. The forward integration was started by using the condition 
Zn(0) = 0 and by arbitrarily letting (dZ,/dq)q=O = 1. The eigenvalues were found by 
trial and error  until the boundary condition Zn(l) = -2r(dZn/dq)q=l was satisfied at 
q = 1. The first four eigenvalues fi and coefficients Bn calculated in this manner are 
given in table II. There is good agreement between the relevant quantities computed from 
the analytical asymptotic expressions and the numerical solutions even for values of n as 
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I 

Numer- 
ical 

TABLE JI. - ODD EIGENVALUES AND COEFFICIENTS FOR LAMINAR 

Analyt- 
ical 

SLIP FLOW IN PARALLEL-PLATE CHANNEL WITH 

Analyt- 
ical 

UNEQUAL WALL TEMPERATURES 

I 
Ratio of slip to average velocity, us/ii 

Numer- 
ical 

1/3 

2. 194 
5.076 
8.114 

11.21 

I 3/5 

2.051 1.849 
4.950 4.866 
8.025 7.974 

11.12 11-10 

Temperature-jump coefficient, tt/2L 

2. 163 
5. 144 
8.232 

11.36 

1. 6 I o. 1333 I o. 5333 I 0.4 I 

2. 390 
5. 150 
8. 160 

11.23 

I 

2.871 
5.780 
8.755 

11.79 

2.610 
5.574 
8.603 

11.68 

fi 
P 2  
fi 
e 4  

B1 
B2 
B3 
B4 

0.4925 
.3925 
.2921 
.2139 

0.8717 
.5099 
.3290 
.2244 

Analyt- 
ical 

2.615 
5.430 
8.405 

11.49 

0. 1061 
.0598 
.0348 
.0206 

TABLE III. - EVEN EIGENVALUES 

AND COEFFICIENTS FOR LAMINAR 

CONTLNUUM FLOW IN PARALLEL- 

PLATE CHANNELWITHUNEQUAL 

WALL TEMPERATURES (Te = 1) 

[Data f rom ref. 9.1 

Eigenvalue 

1.372 
4.625 
7.890 

fi 
6 
fi 
fi 11.16 

Coefficient 
~~ 

1.708 
1. 138 

-A1 
-A2 
-A3 .951 
-A4 I .848 

0. 2503 
.0761 
.0354 
.0201 

0.3155 
. 1199 
.0549 
.0304 

Numer- Analyt- 1 ical I ical 

0.3868 
. 1231 
.0547 
.0298 

.00381 

.00201 

0.0526 
.00967 
.00377 
.00195 

TABLE IV. - ODD EIGENVALUES 

AND COEFFICIENTS FOR LAMINAR 

CONTINUUM FLOW IN PARALLEL- 

PLATE CHANNELWITHUNEQUAL 

WALL TEMPERATURES 

[Data f rom ref. 4.1 

Eigenvalue 
2 . 9 9 2  
6.250 
9.495 

fi 
fi 
fi 
fi 12.78 

1 -  

Coefficient 

1. 319 
1.029 
.894 
.751 

B1 
B2 
B3 
B4 
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low as 3. The extent of agreement depends on the parameters us/; and Ct/2L with the 
best agreement at low values of Ct/2L and higher values of us/;. For those having 
access to digital or analog computing machines, the analytical expressions may provide 
helpful check solutions and for those who do not, the expressions presented herein em- 
ploying a rapidly converging ser ies  solution suitable for hand calculations and yielding 
values that are sufficiently accurate may be a useful tool. Furthermore, it is evident 
from the comparisons that the analytical expressions have definite application to deter- 
mining the higher eigenvalues for laminar slip flow heat transfer in channels. 

RESULTS AND DISCUSSION 

With the numerical information in tables I to N, the variation along the length of the 
channel of the wall heat fluxes, Nusselt numbers, and temperature of the gas adjacent to 
each wall can be evaluated from equations (34) and (35), (44) and (45), and (48a) and 
(48b), respectively. These quantities also depend on the magnitude of the entrance tem- 
perature in relation to the values of the wall temperatures, or on the wall-temperature 
parameter Te. 

tations correspond to the following cases: (a) Te =+2, in which the wall temperatures 
a r e  unequal but both are maintained at higher or lower temperatures than the tempera- 
ture of the gas entering the channel; (b) Te =T1, in which the lower wall or upper wall, 
respectively, is at the temperature of the gas entering the channel; and (c) Te = 0, in 
which the arithmetic average of the wall temperatures is equal to the temperature of the 
gas entering the channel (i. e. ,  (tw, + tw, 2)/2 = te). 

The last case (Te = 0) is a special case and warrants some additional discussion. 
For this special case, only odd eigenfunctions are involved in the various quantities of 
engineering interest (since an = 0 from eq. (24)), and hence the wall heat-flux variations 
(eqs. (34) and (35)), bulk temperature (eq. (43)), Nusselt numbers (eqs. (44) and (45)), 
and temperatures of the gas adjacent to the walls (eqs. (48)) reduce to, respectively, 

The particular values of the wall-temperature parameter Te chosen for the compu- 
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M 

n= 1 

and 

n= 1 

The wall heat-flux variations required to maintain the wall temperatures constant 
were evaluated from equations (34) and (35) with the use of numerical values listed in 
tables I to IV and a r e  plotted in figure 4 for several values of the rarefaction param- 
eter cp 
temperature parameter Te of 0, 1, and 2. The results for Te = -1 and -2  a r e  ob- 
tained from the figures for Te = 1 and 2, respectively, by interchanging subscripts 1 

L/K(tw - t ) f o r  T = -1 and 2 on the dimensionless wall heat fluxes (e. g., qw, 
w7 m 

is equal to q 
crease in gas rarefacti6n produces a decrease in the heat-flux requirement, at a given 
axial position, over that for  continuum flow, for  the range of the dimensionless axial dis- 
tance considered. The exception occurs for q - tw, m) with Te = 2. The 
accommodation coefficient a, which is generally near 1 dor most surfaces and gases but 
which may take on much lower values for some gas-surface combinations, also has an 
important effect on the heat-flux variations along the channel length. Imperfect accommo- 
dation (a # 1) may substantially decrease the wall heat-flux requirements because of the 
increase in effective thermal contact resistance associated with the increased tempera- 
ture jump. For the special case of Te = 0, the heat-flux variations a re  the same at the 
two walls, with heat flowing from one wall out through the other. 

The variation in Nusselt number along the channel length for each wall was evaluated 
from equations (44) and (45) for  Te = 0, 1, and 2 with the use of the numerical eigen- 
values and eigenconstants from tables I to N and is plotted in figure 5 for several values 
of the rarefaction parameter cp and accommodation coefficient a. The results for 
Te = -1  and -2  a r e  obtained from the figures for Te = 1 and 2, respectively, by 
interchanging subscripts 1 and 2 on the Nusselt numbers. 

each wall below its continuum value at every position along the channel. For most of the 
cases examined the Nusselt number decreases with increasing distance from the channel 
entrance; however, Nul for  T, = 1 and 2 (and therefore Nu2 for Te = -1 and -2) 
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p w / 2 p L  and the accommodation coefficient a and for the values of wall- 
g 

e 
L/K(tW - tw, ) for Te = 1). For almost all 'cases considered, an in- 

w, 1 

L/K(tw w7 1 

The effect of the gas rarefaction is, in general, to decrease the Nusselt number at 
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does not follow this behavior. In- 
finities and zeros occur in Nul if 
1 <  - T, < 03 andin Nu2 if 
-03 < T < - 1. The Nusselt numbers 
become infinite when the bulk mean 
temperature of the fluid is lequal to 
the appropriate wall temperature, 
that is, when Tb = - 1  or 1 (see 
eqs. (43) to (45)). The longitudinal 
variation of the dimensionless bulk 
temperature Tb (eq. (43)) was ex- 
amined and the results are plotted 
in figure 6. For Te = 1 and 2 the 
dimensionless bulk temperature Tb 
commences with the value of Te at 
x = 0 and decreases with increasing 
distance from the entrance. For 
Te = 0 the dimensionless bulk tem- 

e -  

perature remains constant (equal to zero) with increasing distance from the entrance. 
The effect of an increase in rarefaction is to increase Tb toward the entrance value Te 
at any given axial location. Imperfect accommodation increases this effect. The axial 
location, therefore, at which Tb = 1 or  - 1  moves downstream of the channel entrance 
as the gas mean free path is increased and/or the accommodation coefficient is decreased. 
The heat-transfer coefficient has little meaning for the situation in which the bulk mean 
temperature of the fluid equals the appropriate wall temperature. A thermal entrance 
length can be arbitrarily defined as the length of channel wall  required for the Nusselt 
number to be within 5 percent of the fully developed value. The Nusselt number varia- 
tions Nul/Nu in the entrance region for unequal wall temperatures 
were evaluated as functions of the rarefaction parameter cp and accommodation coeffi- 
cient a and are presented in figure 7 for several values of the entrance temperature 
parameter Te. A horizontal dashed line corresponding to an ordinate of 1.05 o r  an or- 
dinate of 0.95  (depending on whether the Nusselt number ratio approaches 1 from above 
o r  below) is shown in figure 7. The case of laminar slip flow between parallel plates at 
equal temperatures is investigated in reference 5 and the results a r e  included (fig. 8) for 
comparison. In interpreting these figures, it is important to note that the Reynolds num- 
ber appears in the abscissa. For a given flow velocity and plate spacing, the Reynolds 
number is decreased with increased gas rarefaction. For continuum flow in a channel 
with unequal wall temperatures, the thermal entrance lengths a re  therefore very long, 
while the thermal entrance length at either wall is shortened with gas rarefaction. The 

and Nu2/Nu 
1,d 2,d 
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la) Upper wall. (b) Lower wall. 

Figure 8. - Nusselt number ra t io  in thermal  entrance region. Specular ref lect ion coefficient, 1; ra t io  of specific heats, 1.4; 
Prandtl  number, 0.73; equal wall  temperatures. 

increase in temperature jump with a decrease in accommodation coefficient also has an 
important effect on the thermal entrance length. 
required for the Nusselt number ratio to be within 5 percent of its fully developed value is 
least for the channel with the walls at the same temperature (fig. 8). 

The variation along the length of the channel of the temperature of the gas adjacent to 
the upper wall  and to the lower wall has been evaluated from equations (48a) and (48b), 
respectively, and plots a r e  given for Te = 0, 1, and 2 in figure 9. 
Te = -1 and -2 a r e  obtained from the figures for Te = 1 and 2, respectively, by in- 
terchanging subscripts 1 and 2 on the gas temperatures t and then multiplying the 
results by -1 (e. g., T(<, 1) for Te = 1 is equal to -T(<, -1) for Te = -1). 

changes discontinuously from the value te at the channel entrance (x < 0) to the value 
at the appropriate wall and remains constant for x - > 0. In other words, t 

the difference between the surface temperature t (or t ) and the contiguous gas 
temperature t (or  t ) is zero along the entire length of the channels. This result 
means that, for continuum flow, T(<, 1) = 1 and T(<, -1) = -1 for x - > 0 for all Te. 

have non- 
zero values. In general, the effect of an increase in rarefaction is to decrease T(<, 1) 
and increase T([, -1) toward the entrance value Te at any given axial location. The in- 
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For a given mean free path, the length 

The results for 

g 

In the absence of rarefaction effects, the temperature of the gas adjacent to the walls 

or  t 
w, 1 w, 2 
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With rarefaction, the temperature differences tg, - tw, and tg, 2 - tw,2 
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crease in the difference between the local wall temperature and the contiguous gas tem- 
perature with an increase in accommodation coefficient is evident. The solutions for 
T((, 1) and T(5, -1) approach their respective limiting values at x - 00 asymptotically 
for the slip flow of a gas, while for the continuum flow, there is, as mentioned pre- 
viously, a step change in T((, 1) and T(<, -1) at x = 0. 

CONCLUSIONS 

An analytical study was conducted for the laminar forced-convection heat transfer to 
a slightly rarefied gas flowing between two long parallel surfaces. These surfaces were 
taken to have constant but unequal temperatures. The wall heat fluxes and Nusselt num- 
bers in both the entrance and the fully developed regions were obtained as functions of 
the gas mean free path for  various values of the wall temperature constant Te. The 
analysis provided analytical expressions for the even and the odd eigenvalues and eigen- 
constants which show good agreement with numerical results, especially for the higher 
eigenvalues and eigenconstants. Some of the characteristics of laminar slip flow heat 
transfer can be summarized as follows: 

1. The wall heat-flux variation required to maintain the wall temperatures constant 
is, in general, decreased with an increase in gas rarefaction and/or a decrease in the 
value of the accommodation coefficient. The heat f lux  at either wall approaches asymp- 
totically a constant value that depends solely on the temperature- jump coefficient. 

2. The Nusselt numbers do not become constant until a linear temperature gradient 
is established in the gas, which requires, for continuum flow, fairly long entrance 
lengths. The Nusselt number, in general, is decreased below its continuum value because 
of the effect of gas rarefaction and imperfect thermal accommodation. 

3. The fully developed Nusselt number is the same for either wall  and is independent 
of the magnitude of the entrance temperature in relation to the values of the wall tempera- 
tures. It does, however, depend on the temperature-jump coefficient. The effects of gas 
rarefaction on the fully developed Nusselt number a r e  more pronounced in a channel with 
equal wall temperatures than in a duct with unequal wall temperatures. 

value with gas rarefaction. 
least for the channel with the walls at the same temperature. 

moderate the results given herein. Such effects were not considered in this analysis. 

4. The thermal entrance length at either wall is shortened from its continuum flow 
For a given mean free path, the thermal entrance length is 

Finally, other rarefaction effects, such as thermal creep velocity, would undoubtedly 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, May 14, 1965. 
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APPENDIX A 

SYMBOLS 

*n 
a 

an 

Bn 

bn 

C 

C 
P 

D 

DT 

f(v) 
Gn 
H(v) 

h 

I1 

J 

J 1  

L 

Q 

coefficient defined by eq. (50) 

accommodation coefficient 

even coefficient in ser ies  ex- 
pansion 

T e , L e . ,  an/Te 
even coefficient divided by 

coefficient defined by eq. (64) 

odd coefficient in ser ies  ex- 
pansion 

constant defined by eqs. (49) 
and (60) 

specific heat of gas 

arbitrary constant 

thermal diameter for channel, 
4L 

dimensionless velocity, u(v)/U 

coefficient in series expansion 

function of 17 

heat- transfer coefficient, 
qw/ctw - tb> 

definite integral defined in 
eq. (52) 

eq. (55) 
indefinite integral defined in 

definite integral defined in 
eq. (59), equal to I1 

half distance between plates 

mean free path 

Nusselt number, h D T / ~  

Prandtlnumber, pc / K  

gas pressure 

rate of heat transfer per unit 

P 

area from wall to gas 

Reynolds number, 2piIL/p 

gas constant 

dimensionless temperature, 
(t - tw, ,)/(tW 1 - t 

temperature, (t - td)/ 

(tw, 1 - tw, m) 
gas temperature 

temperature of gas adjacent to 

1 
w7 m 

dimensionless entrance region 

wall 

temperature equal to arithmetic 
average of wall temperatures , 
‘tw, 1 + tw, 2112 

gas velocity 

average velocity 

function of C 
axial coordinate 

even transverse distribution 
function 

even eigenfunctions of eqs. (21) 

transverse coordinate 

odd transverse distribution 
function 
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'n 

'v 
a 

P 

Pn 
r 

Y 

yn 

YV 

6n 

'n 
5 

rl 

K 

x 

odd eigenfunctions of eqs. (21) 

odd eigenfunctions of eq. (B3) 

dimensionless velocity-slip 
coefficient, t U / 2 ~  

separation constant 

even eigenvalues of eqs. (21) 

dimensionless temperature - j ump 
coefficient, tt/2L 

separation constant 

odd eigenvalues of eqs. (21) 

odd eigenvalues of eq. (B3) 

AI1 
IR J1 

dimensionless axial distance, 
4(x/2L)/RePr 

dimensionless transverse coordi- 
nate, Y/L 

gas thermal conductivity 

ratio of specific heats 

P 

et 

t U  

P 

CT 

40 

* 

gas viscosity 

temperature- jump coefficient 

velocity-slip coefficient 

gas density 

specular reflection coefficient 

rarefaction parameter, p @ / 2 p ~  

separation constant 

Subscripts: 

b gas bulk condition 

d 

e entrance, x = 0 

g gas adjacent to wall 

s slip 

w wall 

0 continuum flow conditions 

1 

2 

fully developed region or condition 

upper wall, y = L 

lower wall, y = -L 
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APPENDIX B 

EVALUATION OF SERIES COEFFICIENTS b, 

The odd coefficients of the series expansion (eq. (26)) are determined as the quotient 
of two integrals (eq. (25)): 

With equation (21a) applied to the odd eigenfunctions Zn(q), the integral appearing in the 
numerator may be written as 

since Zn(0) = 0. According to equation (21b), however, 

so that 



In order to evaluate the integral in the denominator of equation (25), let Z v  and Zn 
be the solutions associated with two distinct values of y: y, and yn. Therefore, 

- + yvf(q)Zv = 0 
d2Z , 

with Z v ( l )  = - 2 r  - 

dq2 

and 

Equation (B3) is multiplied by Zn and equation (B4) by Zv,  and then equation (B4) is 
subtracted from (B3). The result, after transposing, is 

If this equation is integrated between 0 and 1, the following is obtained: 

where Zv(q, 7,) and Zn(q, yn) for v # n are  orthogonal functions with respect to the 
weight function f(q); that is, 

c1 f(q)ZvZn dq = 0 for v # n (B6) 

This property of the eigenfunctions was used in obtaining equation (25). 

square of the characteristic function: 
If y ,  = yn, the integral on the left side of equation (B5) becomes the integral of the 

1 

f(q)Zn(q)dq 2 = - lim 

yn - Yv v-n 
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The expression on the right assumes the intermediate form O/O. Hence, it is necessary 
to apply L'Hospital's rule and to differentiate numerator and denominator with respect to 
y, before setting y, = yn. Carrying out this differentiation results in 

Near q - 0, the boundary condition Zn(0) = 0 requires that the odd solution to qua- 
tion (21a) be given by Zn(q - 0) = F sin (dw)q), where F is m arbitrary constant. 
Hence, at q = 0, 

Thus, equation (B7) reduces to 

Into this expression, there is now substituted the boundary condition 

Zn( l )  = -2+) 
q= 1 

This substitution gives 
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Therefore using equations (25), (B2), and (B9) yields 
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